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Swin Transformer Based Crack Detection
Neelesh Verma, Mengyang Pu, Mei Zhang, Danil Prokhorov, Jie Wei, and Haibin Ling

Abstract—Crack detection in various infrastructures is
paramount to ensure safety, maintenance, and longevity. The
recognition task is made complex by the structural inhomogeneity
of cracks. Deep learning approaches have largely improved the
performance of crack detection, but challenging cases still remain
to be solved such as imprecision in crack details, partly due
to the low spatial resolution in state-of-the-art solutions (e.g.,
CrackFormer). To address these issues, this paper introduces
a novel approach to crack detection, named CrackSwinT, using
the Shifted window Transformer (Swin-T) architecture by taking
advantage of its powerful multi-scale representation. Specifically,
CrackSwinT extends previous CrackFormer in several important
ways. First, to leverage the efficiency of Swin-T attention over
normal attention, we use Swin attention blocks instead of normal
attention blocks. Second, we introduce skip connections within
encoders and decoders for more effective information flow thus
stabilizing the training. Moreover, the decoder is fed with input
from the previous decoder block and the corresponding encoder
block with a 1×1 convolution for efficient learning of decoders to
generate the crack feature maps. Finally, CrackSwinT uses focal
loss to handle the imbalance between crack and non-crack pixel
samples. Extensive experiments are conducted on three crack de-
tection benchmarks, including CFD, Crack200, and Crack500fix,
where Crack500fix is enhanced from Crack500 by our careful
investigations and revisions. On all three datasets, CrackSwinT
outperforms previous state-of-the-art methods by significant
margins, e.g., nearly 5% in terms of optimal dataset scale (ODS)
and optimal image scale (OIS) scores on Crack500fix. The code
is available at https://github.com/neeleshverma/CrackSwinT.

Index Terms—Pavement crack detection, deep learning, con-
volutional neural network, Transformer, Swin Transformer.

I. INTRODUCTION

CRACK in infrastructures, such as buildings, bridges,
roads, and pipelines, pose serious threats to safety, sta-

bility, and durability [1]–[6]. Detecting and monitoring these
cracks is of utmost importance to ensure early intervention,
prevent catastrophic failures, and optimize maintenance ef-
forts. With the rapid advancements in deep learning and com-
puter vision, automated crack detection systems have emerged
as a cost-effective solution to assess the state of infrastructure.

Deep learning (DL) models have revolutionized various
computer vision tasks, such as object detection, image seg-
mentation, and classification, by automatically learning rel-
evant features from the data. Convolutional Neural Networks
(CNNs) [7] have been the backbone of many successful image-
related applications. However, CNNs suffer from limitations
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Fig. 1: Top to bottom: original input images, results from
a state-of-the-art crack detector (CrackFormer-II [10]), and
CrackSwinT results. One can observe that previous results
have some noises near the cracks (middle left), and the
detected crack is discontinuous (middle right). CrackSwinT
(bottom) results improve the results with less noise and
continuous cracks.

when it comes to capturing long-range dependencies and
effectively processing large images. The CNN-based methods
use encoder-decoder architectures. The most common among
them is SegNet [8] and U-Net [9]. In such methods, the
encoder learns the semantic representations using convolu-
tional and pooling layers. However, the cracks have structural
inhomogeneity, such as low contrast between the crack and
background, thickness of the cracks, and continuity of the
cracks. These methods fail to achieve pixel-level segmentation
and hence result in coarse crack segmentation.

There have been multiple architectures suggested for the
task of crack detection [5], [6], [11]–[14]. With deep neural
networks, their receptive field keeps increasing with the depth
and ultimately suppressing the local details which are impor-
tant to capture in the crack detection task. To overcome the
suppressing issue, Transformer-based architectures have been
used in capturing long-range dependencies.

Recently, Transformer-based architectures have gained im-
mense popularity in natural language processing tasks due
to their ability to capture long-range dependencies in text
sequences [15]–[17]. This success has inspired researchers to
explore the application of Transformers in computer vision
tasks as well [18]–[20]. The Transformers have been utilized
in crack detection very recently in the CrackFormer net-
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works [10], [21]. The idea was to utilize its merits to capture
long-range dependencies and global contextual information in
the image. CrackFormer outperformed existing state-of-the-
art methods [5], [6] with significant improvement. Despite the
achievement, challenges remain to be resolved. One issue with
these methods is their generalization across cracks of different
widths. CrackFormer-I [21] focuses on thin cracks and have
troubles when dealing with thick ones. CrackFormer-II [10]
improves upon this issue and performs better on wide cracks,
but oftentimes leaves very crisp boundaries. To address these
issues, our main motivation in this work is to have a network
that generalizes well across various types of cracks – coarse
cracks, fine cracks, etc. As an illustration, Figure 1 shows an
example of a very fine crack (right side) and a moderately
thin one (left side). CrackFormer-I performs well on the thin
crack but cannot maintain the continuity of the crack. On the
thicker crack, the detected boundaries have a lot of noise in
their periphery.

Even though multi-head self-attention of the Transformer
can be made at least as expressive as any convolutional
layer [22], normal attention still uses a fixed receptive field
size, which might not capture both fine-grained and global
information in the image effectively. Swin Transformer [23]
overcomes the fixed-size issue by using hierarchical attention
windows, allowing the model to attend to different parts of the
image at different levels of granularity, improving its ability
to capture both local and global features. This improvement
over normal self-attention motivated us to explore the Swin
Transformer (Swin-T) design in the crack segmentation task.

Inspired by Swin-T, we propose a new crack detection
algorithm, named CrackSwinT, that effectively addresses the
issues discussed. In particular, we build our CrackSwin on
top of the CrackFormer framework with important improve-
ments in various aspects. First, CrackSwinT upgrades the self-
attention modules in CrackFormer with Swin-T-based self-
attention to allow more efficient multi-scale inference. Second,
we use concatenated skip connections, like in other computer
vision tasks [24]–[26], to facilitate the information flow from
earlier layers to later ones while preserving spatial informa-
tion. CrackSwinT uses these concatenated skip connections in
adjacent encoder blocks and decoder blocks separately. Third,
we introduce skip connections between the encoder and the
corresponding decoder for parameter efficiency and feature
propagation. Lastly, we employ the focal loss to address the
sample imbalance issue, which occurs naturally due to the
sparsity of crack pixels.

The main contributions of this paper can be summarized as
follows:

• Developed a novel Swin-based self-attention block to
capture long and short-range contextual information using
position embeddings and shifted windows.

• Devised the concatenated skip connections between ad-
jacent encoder and decoder blocks for information flow
from initial layers to later layers.

• Facilitated encoder decoder feature propagation, bypass-
ing the feature map from the encoder layer to correspond-
ing decoder layers by performing a 1×1 convolution with
the feature maps from the previous layer of the decoder.

• Crack500fix dataset enhances the Crack500 dataset [6]
with better data distribution and annotation.

The contributions together bring clear benefits to the pro-
posed CrackSwinT method. In the extensive experiments con-
ducted on three crack detection benchmarks, including CFD,
Crack200, and Crack500fix, CrackSwinT clearly outperforms
previous state-of-the-art methods by significant margins, e.g.,
nearly 5% in terms of optimal dataset scale (ODS) and optimal
image scale (OIS) scores on Crack500fix.

The rest of the paper is organized in the following way:
Section II reviews related works; Section III describes the
crack detection with Swin Transformers; Section IV presents
the Crack500 dataset and some problems and resolutions;
Section V provides experiments on different datasets with
results and an ablation study for different components of the
network, and Section VI concludes the paper.

II. RELATED WORKS

In this section, we will briefly review non-deep learning and
deep learning-based methods for crack segmentation and then
discuss modern Transformer-based methods.

A. Traditional Methods

Crack detection has been studied in different fields on
conventional image processing methods. Here, we summarize
some of these methods directly related to traditional learning-
based solutions.

In one of the early studies on crack detection, Iyer et al. [27]
used morphological operations and cross-curvature evolution
to detect cracks in noisy environments in pipe images. Build-
ing on this approach, Sinha et al. [28] proposed a two-step ap-
proach where local crack features are extracted using statistical
properties, and then global cleaning and linking operations
are performed to merge segments to form cracks. Huang et
al. [29] and Peng et al. [30] also proposed a similar two-
way approach with more emphasis on background removal.
Xu et al. [31] used saliency and statistical features to identify
cracks, which includes generating a saliency map, measuring
the spatial continuity of potential crack pixels, updating the
map with a Bayesian model, and ultimately extracting cracks
through adaptive binarization.

There have also been studies about the frequency domain
using Wavelet transforms. Subirats et al. [32] located the
singularity of wavelet transform to detect the cracks. Zhou
et al. [33] decomposed the image into different-frequency
subbands by the wavelet transform. In the high-frequency
subbands, distresses were transformed into high-amplitude
wavelet coefficients and noise into low ones. Later, Subirats et
al. [34] proposed a 2D continuous wavelet transform (CWT)
method where a complex coefficient map was computed from
CWT in two directions and the cracks were detected using
these coefficients.

Similar to wavelets and saliency maps, many other features
have also been used to detect and localize cracks. Hu et al. [35]
utilized local binary patterns (LBP) features, and Kapela et
al. [36] used histograms of oriented gradients (HoGs) for crack
detection. Salman et al. [37] used multiple-oriented Gabor
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filters. Another popular approach, CrackTree [4], constructed
a crack probability map using tensor voting, modeled it as a
graph, and derived minimum spanning trees from this graph.
CrackForest [1] utilized hand-crafted features from multiple
levels to detect cracks.

B. Deep Learning Methods

Deep neural networks (DNNs) have achieved extraordinary
results in various vision tasks. One of the earliest methods
was proposed by Zhang et al. [38]. The authors used a simple
four convolutional layers and two fully connected layers. Later,
deeper networks were used [39]–[42] and performance kept on
improving.

With developments in deep learning (DL), many new ar-
chitectures were developed. Crack localization can be viewed
as a subtask of segmentation. Using pyramid-based networks
and hierarchical features has been a common technique in
segmentation. DeepCrack [5] utilized multi-scale and multi-
level features from a pyramid-based network and Conditional
Random Fields (CRFs) to refine the final prediction results.
Yang et al. [6] proposed a feature pyramid and hierarchical
boosting network that utilized the pyramid-based network to
extract multi-scale features and integrate contextual informa-
tion from different scales as well as the hierarchical boosting
module to balance the contribution of easy and hard samples,
this method performs well on both types of datasets - coarse
and fine, but does not produce very sharp crack boundaries.
Zhang et al. [43] proposed the CrackNet for crack detection
purposes which specifically uses invariant spatial size through
all layers such that supervised learning can be conducted at the
pixel level. Fei et al. [44] built on this architecture to propose
CrackNet-V with a deeper architecture and fewer parameters.

Crack detection heavily relies on learning contextual infor-
mation, topological structures, and various degrees of damage.
Encoder-decoder architectures have been tried to resolve some
of these issues. Liu et al. proposed FPCNet [45], which
uses a multi-dilation module to extract features of cracks with
different widths and topologies and a Squeeze-and-Excitation
(SE) module to improve the discriminative power of the
learned features. A generative adversarial network (GAN)
based method CrackGAN was proposed by Zhang et al. [46],
which achieved high accuracy and robustness to partially ac-
curate ground truths in detecting cracks on pavement surfaces.

With the advent of Transformers [17], the attention mecha-
nism has been employed in various vision and natural language
processing tasks. The CrackFormer network [21] proposes
a novel Transformer-based network for fine-grained crack
detection. The network consists of a SegNet-like encoder-
decoder architecture with novel self-attention and scaling-
attention modules. The self-attention modules capture long-
range dependencies between pixels in the input image and
the scaling-attention modules are used to combine outputs
from the corresponding encoder and decoder blocks. How-
ever, the network focused on fine-grained crack detection and
performed poorly with images having coarse cracks. To over-
come the limitations of CrackFormer, the authors developed
a modified version [10] that uses an upgraded Transformer

Encoder block consisting of a local self-attention layer and a
local feed-forward layer with skip connections between them.
This change in the Encoder block helped the network learn
the local context and structure information inside the patches.
However, the paper does not perform extensive evaluations of
coarse/thick crack datasets like Crack500 [6].

C. Other Related Work

Aside from the above-mentioned studies that directly work
on crack detection, our work is also related to, or inspired by,
other studies, especially in DL-based edge detection. The crack
detection task has a lot of similarities with edge detection.
Edge detection can be followed by segmentation techniques
to separate the detected cracks from the background.

An early work applying DL to edge detection can be found
in [47]. Recently, Transformer-based networks have been used
in edge-detection tasks as well. Pu et al. [48] proposed a novel
edge detection method based on the Transformer architecture
which consists of two stages: a global Transformer encoder
to capture long-range global context and a local Transformer
encoder to excavate short-range local cues. The global Trans-
former encoder uses a self-attention mechanism to learn long-
range dependencies between pixels in the input image. The
local Transformer encoder uses a self-attention mechanism to
learn short-range dependencies between pixels in the input
image. CrackSwinT method draws architectural motivation
from this line of work.

In the field of Transformers, several developments have been
made. We use the Swin Transformer [23], which employs
a hierarchical architecture with shifted windows to improve
efficiency and performance, which has been shown to achieve
better performance than Vision Transformers.

III. CRACK DETECTION WITH SWIN
TRANSFORMERS

A. Overview

The CrackSwinT architecture uses a CrackFormer-like net-
work as a backbone. The self-attention layers have been
replaced by Swin-T-based self-attention. Concatenated skip
connections are implemented between adjacent encoder and
decoder blocks. Moreover, encoder feature maps are bypassed
to the corresponding decoder feature map after performing
a 1×1 convolution. The overall architecture is shown in
Figure 2.

The encoder consists of 13 layers (the first 13 layers of
VGG16 [49] as in SegNet). We want feature extraction at
different layers and information flow between features to cap-
ture both long-range contextual information, so we deployed
the encoder in 5 stages, which have respectively 2, 2, 3, 3,
and 3 layers. There is also a concatenated skip connection
from one stage to another as explained in Section III-C. The
features from the encoder and decoder are then fused together
using a FusionBlock to produce an attention coefficient mask.
These masks from all 5 stages are then concatenated and fused
to generate the final mask. Also, to have information flow
between encoder and decoder features, CrackSwinT bypasses
the feature map from the encoder layer to its corresponding
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Fig. 2: The CrackSwinT network uses CrackFormer-like architecture as a backbone. It consists of 5 encoder blocks having
respectively 2, 2, 3, 3, and 3 Swin-T-based self-attention layers and 5 corresponding decoders with 3, 3, 3, 2 and 2 self-attention
layers. Concatenated skip connections between adjacent encoder blocks and adjacent decoder blocks are for information flow.
Skip connections across the encoder block to the decoder block are for feature propagation.

decoder layer and performs a 1×1 convolution with the feature
maps from the previous layer of the decoder. In the following
sections, we will describe each of the modules and operations
in detail.

B. Swin Transformer Block

The Swin Transformer [23] builds on Vision Transformer
(ViT) [50] by introducing two key concepts: hierarchical
architecture and shifted windows. The hierarchical architecture
divides the image into a sequence of smaller patches and then
learns features at different levels of granularity. Hierarchical
design allows the Swin Transformer to learn more complex
features than the original ViT. The shifted windows concept
limits the self-attention computation to non-overlapping local
windows. Window shift makes the Swin Transformer more
efficient than ViT, which computes self-attention over the
entire image.

We took the architectural motivation from the CrackFormer
paper [21]. However, the CrackFormer uses the original self-
attention layer (as proposed in the paper [17]), while we
use the Swin Transformer. Instead of processing the entire
image at once, it divides the image into non-overlapping
patches called windows. These windows are shifted in a
grid pattern to capture information from different parts of
the image. The CrackSwinT network replaces the original
self-attention block with shifted window-based self-attention.
Shifted Window-based Self-Attention focuses on capturing
local dependencies within a sequence by dividing it into non-
overlapping segments or windows. Each segment is processed
separately, and attention is applied within each window, thus
making it beneficial for tasks where the context matters such
as in crack detection.

Fig. 3: Concatenated Skip Connection across an Encoder block

C. Concatenated Skip Connections

The encoder and decoder are laid out in 5 stages. Each
encoder and decoder contains 2 or 3 Swin blocks. The
receptive field keeps on increasing as we move deeper into
the layers. Large receptive fields help in capturing large-range
dependencies and contextual information. However, in the
case of crack segmentation, we also want continuous cracks
(continuous thick lines that are not broken). So we also wish to
preserve short-range contexts in the deeper layers. To achieve
context awareness, we have used skip connections between
the stages as shown in Figure 3. Skip connections allow for
a direct flow of information from one stage to another while
preserving spatial information. Also, it brings more stability
to the training because of better gradient flow.

D. Encoder-Decoder Feature Propagation

For the task of crack segmentation, CrackSwinT needs to
understand both global context and local details. Apart from
the information flow inside encoders and decoders, we also
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Fig. 4: Feature propagation from encoder to decoder

pass feature maps from encoder layers to the corresponding
decoder layers as shown in Figure 4. Using the feature map
helps the decoder better reconstruct and generate fine-grained
details in the output, which is crucial for our task. It also
enables the model to leverage both high-level abstractions and
low-level details simultaneously.

E. Feature Fusion Module

Feature fusion module simply takes the features from each
of the layers from the encoder and corresponding decoder
block, and performs concatenation, convolution, and then
upsampling operation. As suggested in U-Net [9], learned
features in specific decoder blocks can boost the segmenta-
tion performance. Basically, the encoder features are passed
through a sigmoid activation layer, which amplifies some
features while suppressing others. These sigmoid features act
as masks for decoder features and activate some decoder
features while suppressing other irrelevant ones.

We follow the CrackFormer [21] to design the fusion
module. First, the encoder features within an encoder block are
concatenated and passed through a convolution, batch-norm,
and sigmoid layer. The result is a mask-like feature. Similarly,
the decoder features are also concatenated, convoluted, and
passed through batch-norm and ReLu activation. Then this
final decoder feature is multiplied by the mask from the
encoder feature. The useful decoder features are preserved
while irrelevant ones are attenuated at this point.

The feature fusion step is performed at each of the encoder
and decoder blocks. This way, we have five maps, which are
then passed through the convolution and sigmoid layers to get
our final segmented image.

F. Handling Imbalanced Dataset

CrackSwinT predicts a binary map for each image with
crack pixels having a value of 1 and non-crack pixels as 0. It
is clear that in any image, non-crack pixels will be much more
than the number of crack pixels; resulting in class imbalance
since we use precision and recall-based metrics. To address
this class imbalance, we use the Focal Loss [51]. The key
idea behind Focal Loss is to reduce the loss assigned to well-
classified examples (pixels in our case) and focus more on the
hard or misclassified examples. It does this by introducing two
main components:

Fig. 5: Some inappropriate samples from Crack500 dataset.
It can be noticed in these images that the cracks are lying
towards the very corner hampering the training.

• Modulation Factor (Focusing Parameter) - Focal Loss
introduces a hyperparameter called the “focusing pa-
rameter” (often denoted as gamma, γ). The “gamma”
parameter controls the degree of down-weighting for
well-classified examples. A higher value of gamma gives
more emphasis to hard examples, making the loss more
focused on correcting misclassification.

• Focal Loss Function - The Focal Loss function itself is
defined as a modification of the standard cross-entropy
loss. It is computed as follows:

FL(pt) = −αt(1− pt)
γ log(pt)

where αt is a dynamic balancing factor that helps to
address the class imbalance and is used to assign a
higher weight to underrepresented classes, pt represents
the predicted probability of the correct class, and γ
determines the degree of focusing on hard examples.

IV. CRACK500fix: ENHANCED CRACK500

We need a dataset having both coarse and fine cracks. Most
of the current datasets [4], [5], [52] generally, have only one
of these attributes. An exception is the Crack500 dataset [6],
on which we choose to focus our study. It comprises 500
images (2560 × 1440) of pavement cracks taken on Temple
University’s main campus using cell phones. Each image has
a detailed binary map indicating the location of cracks at the
pixel level. This dataset is currently the largest publicly avail-
able pavement crack dataset with fine-grained annotations. It
is divided into 250 training images, 50 validation images, and
200 test images.

Because of the limited number of images and their large
size, the authors divided each image into 16 non-overlapping
regions. So new images are 640×360. Only regions with more
than 1,000 pixels of cracks were retained, resulting in 1,896
training images, 348 validation images, and 1,124 test images.
The validation data is used for model selection during training
to prevent overfitting. Once the model is chosen, it is tested
on the test data and other datasets to assess its performance
and generalizability.
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(a) Original Image (b) Ground Truth Map (c) Original Image (d) Ground Truth Map

Fig. 6: (a,c) Input crack images. (b) The ground truth binary map misses some crack pixels. (d) The crack is continuous in
the original image but the ground truth binary map does not capture it.

TABLE I: Statistics of the new dataset Crack500fix

Dataset Total
Images

Cracks in
corner

Removed
Images

Final
Images

Training 1896 136 8 1888
Validation 348 22 4 344

Test 1120 55 4 1116

A. Issue with Crack500
Despite its desired diversity in crack patterns, we find

some issues in the images or annotations in the original
Crack500. Two sample images from the dataset are shown in
Figure 5. We can observe that some of the images had cracks
located in the extreme corners. This can be problematic during
training because these corner cracks may not provide useful
information or could introduce noise into the training process.

Additionally, while manually going through the dataset,
we also find some frequent imprecision in the binary crack
annotation: (1) the binary maps for some cracks are missing,
and (2) in the case of fine cracks, the continuity of the crack
sometimes is not well maintained in the binary map. Figure 6
illustrates both the issues.

B. Enhancing Crack500
To address the issues mentioned above, we went through the

Crack500 dataset manually and carefully. If a crack appears at
a corner, then first we will pull out the original image (before
cropping into 16 non-overlapping regions). From this original
image, we will simply shift the cropping window towards the
crack by 150× 150 pixels as shown in Figure 7. We finalized
this shifting amount by manually using different shifting and
looking at the resulting images. After performing shifting,
some images still had cracks in the corners. Since these were
very few, we simply removed them from the dataset. The
dataset info for this new modified dataset is shown in Table I.

The second issue in the dataset was with the binary maps,
in which, the binary map did not capture all the crack pixels
correctly (found with thin cracks), as shown in Figure 6.
To overcome this issue, we ran the two already existing
algorithms - FPHBN [6] and CrackFormer II [10]. After
passing the faulty images with these two algorithms, we took
the intersection of the binary map produced by both of these
methods. The results are shown in Figure 8. Since Crack-
Former II works well on thin cracks and FPHBN produces
coarse binary maps, this approach should be able to resolve
this anomaly. We call this new dataset as Crack500fix.

V. EXPERIMENTS

A. Datasets

We picked 3 datasets to validate our method.
1) Crack500fix: As already mentioned, this dataset is a

modified version of the Crack500 dataset [6]. The modification
procedure is explained in the section IV.

2) Cracktree200: The Cracktree200 dataset was presented
by Zhou et al. [4]. It consists of 206 pavement images of
dimensions 800× 600 with various kinds of cracks as shown
in Figure 9. It comes with some challenges for testing and
evaluating the proposed method, including issues such as
shadows, occlusions, low contrast, noise, etc. These challenges
mimic real-world conditions. The annotation of this dataset is
done manually on a pixel-wise basis.

3) CFD: This dataset was proposed by Shi et al. [1] to
evaluate their methodology. The dataset contains 118 images
of urban road surfaces with dimensions 480× 320, shown in
Figure 9. The annotation has been done manually. The images
contain noises such as shadows, oil spots, and water stains.
The images were taken by an iPhone5 with a focus of 4mm,
an aperture of f/2.4, and an exposure time of 1/134s.

B. Implementation Details

1) Hyper-parameters Setting: All the images have been
resized to 360 × 640. We set Adam optimizer with learning
rate = 1e−3, weight decay = 2e−4, and training iteration 5000.

2) Loss Function: As discussed in Section III, we use Focal
Loss as our loss function. The implementation is already avail-
able in the PyTorch library. We used the default parameters -
γ as 2, and α as 0.25. We have outputs from all 5 encoder-
decoder pairs and a final output from our FusionModule. Our
final loss is simply a summation of focal loss (FL) over all
these outputs.

Loss =
N∑
i=1

 5∑
j=1

FLside
j

+ FLfusion


where FLside

j represents the focal loss from the j-th encoder-
decoder pair output and FLfusion represents the focal loss from
the fusion layer.

C. Performance Metrics

The crack detection can be thought of as a binary classifica-
tion task on a per-pixel level. Therefore, we can leverage usual
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(a) Original image in Crack500 (b) Ground Truth (c) Shifting image by 150× 150 (d) Shifted Ground Truth

Fig. 7: Dealing with Cracks in the corner by shifting the cropped window towards the crack.

(a) Original image (b) Ground truth in Crack500 (c) Ground truth fixed

Fig. 8: Crack pixels are missing in the ground truth of Crack500 (b). We fixed the ground truth in (c).

Fig. 9: Examples from the CFD (top) and Cracktree200
(bottom) datasets.

metrics like Precision and Recall. Precision can be calculated
as P = TP

TP+FP and Recall as R = TP
TP+FN for true/false

positive (TP/FP) and false negative (FN). So, for each image,
we can compute the F1 score (2 P∗R

P+R ).
Depending on the way of thresholding, we can have two

evaluation metrics -
1) ODS: If we fix the threshold for the dataset and compute

the F1 score at different thresholds, we get the Optimal Dataset
Scale (ODS).

ODS = max
t∈T

(
2

ptrt
pt + rt

)
where pt and rt represents the precision and recall at threshold
t, and T = {0.01, 0.02, . . .} is the set of sampled thresholds.

2) OIS: Instead of fixing the threshold across the dataset,
if we choose the best F1 score for each image, we get the
Optimal Image Scale (OIS).

OIS =
1

N

N∑
i=1

max
t∈T

(
2

pitr
i
t

pit + rit

)
where N is the total number of images.

D. Comparison with SOTA methods

We have compared our results with three State-of-the-art
methods - FPHBN [6] CrackFormer I [21] and CrackFormer
II [10].

1) FPHBN: We trained FPHBN from scratch on the
Crack500fix dataset (since the original results were on
Crack500). We used the same parameters as given in the
original paper [6].

2) CrackFormer I: This is the first paper in the Crack-
Former series. The paper [21] does not perform the evaluation
on the Crack500 dataset. So we retrained the network on the
Crack500fix dataset for comparison.

3) CrackFormer II: Similar to its predecessor, this paper
[10] also does not perform the evaluation on the Crack500
dataset. So we had to train it again on our Crack500fix dataset.
All the hyper-parameters are set the same.

E. Experimental Results

1) Results on Crack500fix: This dataset contains both thin
and thick cracks. The evaluation metric scores are also listed
in Table II. CrackSwinT method outperforms all the existing
ones. CrackSwinT performs 5.2% better on ODS and 4.5%
better on OIS as compared to CrackFormer II. Primarily,
CrackSwinT performs well on thick cracks which was not the
case with CrackFormer II and CrackSwinT also produces crisp
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TABLE II: The ODS, and OIS of different methods on
Crack500fix test dataset.

Methods ODS OIS
CrackForest [1] 0.199 0.199

EDTER [48] 0.660 0.661
DeepCrack [5] 0.640 0.668

FPHBN [6] 0.604 0.635
CrackFormer I [21] 0.661 0.683
CrackFormer II [10] 0.672 0.693

CrackSwinT 0.724 0.738

TABLE III: The ODS, and OIS of different methods on
CrackTree200 test dataset.

Methods ODS OIS
CrackForest [1] 0.080 0.080

EDTER [48] 0.481 0.530
DeepCrack [5] 0.379 0.513

FPHBN [6] 0.517 0.579
CrackFormer I [21] 0.840 0.859
CrackFormer II [10] 0.851 0.864

CrackSwinT 0.879 0.893

boundaries which was a drawback of FPHBN. Some results
are also shown in Figure 10 depicting the improvement.

2) Results on CrackTree200: CrackTree200 is a thin crack
dataset that has been used in all the methods from which we
are comparing. The results are shown in the Table III. We can
see from Table III that CrackFormers were already performing
well on the thin cracks and CrackSwinT outperforms them.
We gained 2.8% on ODS and 2.9% on OIS. Some of the
results are shown visually in Figure 10. It can be observed
that CrackSwinT produces thin and crisp boundaries.

3) Results on CFD: The CrackFormer series has no results
on the CFD dataset. So we evaluated both the networks on
this dataset. From Table IV, it can be seen that CrackSwinT
achieves better scores than FPHBN and CrackFormer I and II
(2.3 % gain on ODS and 3.3 % gain on OIS). Some results
are also illustrated in Figure 10.

F. Ablation Study

In CrackSwinT, there are three main modules - Swin
Transformer, Skip Connections within encoders and decoders,
and Encoder-Decoder Information Flow. We will show in
subsequent subsections, how each of these modules plays an
important in improving the evaluation score. Lastly, we also
analyzed Focal Loss as opposed to Binary Cross Entropy
(BCE) Loss. In the following subsections, whenever we are
removing a particular module, the rest of the modules and
architecture remain the same.

1) Swin Transformer vs Conventional Transformer Block:
Traditional transformers use fixed-size windows for self-
attention, which can be problematic when dealing with images
due to their grid-like structure. Swin Transformer addresses
this issue by using shifted windows, enabling better capture of
local and global information in images. This is also captured
in Table V. We can conclude that there is a significant im-
provement over the conventional Transformer with the Swin.

TABLE IV: The ODS and OIS of different methods on CFD
dataset.

Methods ODS OIS
CrackForest [1] 0.104 0.104

EDTER [48] 0.671 0.692
DeepCrack [5] 0.669 0.681

FPHBN [6] 0.683 0.705
CrackFormer I [21] 0.708 0.724
CrackFormer II [10] 0.748 0.760

CrackSwinT 0.771 0.793

TABLE V: The ODS, and OIS of Swin vs Conventional
Transformer Block on Crack500fix test dataset.

Module ODS OIS
Conventional Transformer 0.670 0.685

Swin Transformer 0.724 0.738

TABLE VI: Ablation study for different modules on
Crack500fix test dataset.

Module ODS OIS
With all modules 0.724 0.738

Without Concatenated Skip Connections 0.697 0.711
Without Information Flow 0.708 0.722

TABLE VII: The ODS, OIS scores of BCE vs Focal Loss

Module ODS OIS
BCE Loss 0.701 0.725
Focal Loss 0.724 0.738

2) Concatenated Skip Connections: It has been shown in
various vision tasks that concatenated skip connections, in
general, improve performance and stability in training. Self-
attention mechanism itself has skip connections. In Crack-
SwinT, we introduced the skip-connections between the en-
coders and the decoders. Table VI shows the evaluation scores
with and without skip connections.

3) Encoder-Decoder Feature Propagation: The decoder
receives the features not just from the previous decoder block
but also from the corresponding encoder block. We simply
perform a 1×1 convolution to reduce the dimensions and
pass it to the decoder block. The encoder provides valuable
contextual information for segmentation. Since different levels
of features captured by the encoder represent information
at various spatial resolutions, by combining features from
both the encoder and previous decoder blocks, the model can
leverage multi-scale information. We performed the ablation
study for this by removing this information flow and found
out that the results suffer, as shown in Table VI.

4) Focal Loss vs BCE Loss: The loss functions used in
FPHBN [6], CrackFormers [10], [21], and DeepCrack [5] are
cross-entropy losses with slight modifications. We have used
Focal Loss since it addresses class imbalance. To quantify
its importance, we trained our network with Focal Loss and
BCE Loss. The results are summarized in Table VII, where
we can deduce that focal loss indeed improves the overall
performance.
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Fig. 10: Comparison of our method with CrackFormer-II on different datasets. The first row is from Crack500fix (a thick crack).
The second row is a thin crack of Crack200 and the last row is a medium-sized crack from the CFD dataset. CrackSwinT
consistently performs well across different widths of crack.

VI. CONCLUSION

In this paper, we proposed a Swin Transformer-based
architecture, named CrackSwinT, for crack detection using
CrackFormer as a backbone. The self-attention layer of the
Swin Transformer is used to capture both short and large
ranges of contextual information because of its flexible and
large receptive field. The learned features from encoder layers
are passed to the decoder with a 1×1 convolution which helps
the decoder to regenerate those learned features efficiently.
We also introduced concatenated skip connections between
adjacent stages of the encoder and decoder for information
flow and stability in training. Moreover, focal loss is em-
ployed to address the data imbalance issues in crack pixels.
There are three datasets on which we evaluated CrackSwinT.
Out of these three, Crack500 has a good mix of different
sizes of cracks but suffers from some imprecision annotation
and inappropriate crack locations. We fixed these issues and
proposed an enhanced version named Crack500fix. Results
demonstrated that CrackSwinT outperformed other methods
on all datasets. Future work includes enhancing the method for
multi-modal crack detection, applying for corrosion detection,
and implementing it in a human-machine inspection device.
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